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A bs tract 

We are able to obtain a bounded particle, with no indication of a singularity appearing, in 
severn ways different from our previous papers. For one set of data we find slightly 
greater structure (more turnabout points) than previously. We discuss some of the proper- 
ties of ten different sets of data. 

1. Introduction 

In previous papers we obtained (Muraskin, 1973a; Muraskin & Ring, 1973; 
Muraskin, 1973b) a bounded particle from 'aesthetic' mathematical ideas. 

Running the computer for various directions from the origin, we found in 
all cases, for all our particle solutions, that all the field components monotonic- 
ally approach zero at a sufficient distance from the origin. We ran the computer 
out as far as x = 1800 in one instance. It would be necessary for additional 
structure to show up eventually if a solution is to describe a many-particle 
system. 

A possible hypothesis to be made is that the 'vacuum' outside the particle 
shows all sorts of oscillations in the field components.  The idea of a highly 
agitated 'vacuum' has been suggested by many authors (Bohm, 1962; Nelson, 
t966; Kershaw, 1964; Boyer, 1968; de la Pena-Auerbach, i969;  Lanzcos, 1957; 
Wheeler, 1962; and others). 

In this paper we discuss several attempts at trying to improve upon our 
previous results. We find we can only claim mild success in this regard as we 
have only slightly greater oscillatory behavior for the field components.  We 
shall limit the discussion to the equations P~k;t = 0, gi];k = O. 
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2. Data 1 

The values o fgq  are not  critical• for the point we wish to demonstrate below. 
We take the following for P~k at the origin point 

P~3 = -4 r t  Pl o = 81r 

P23 = 4rr P~o = -8rr  (2.1) 

[`~ = .1 P~2 = 0 

All other P}k are taken to be zero at the origin. When we ran down the z-axis, 
only the six components  listed above remained non-zero, lP~3, P]3, P~o; P~o 
remained unchanged throughout the entire ran. The graph of Pg, is given by a 
cosine curve and lP~2 is given by a sine curve. The amplitude is • i. The wave- 
length is 27r/P~a = • 5 and the period, obtained from running down the time 
axis, is 2rr/plo =" 25. 

Thus, it follows that ~k;* = 0 can be used to generate sine and cosine curves 
when we choose the data at the origin as above. Thus, lP}k;t = 0 is capable of  
describing an indefmite number of  oscillations for a field component.  

The difficulty with the above data is that integrability is not satisfied. This 
difficulty in extracting the sine and cosine effect from the field theory has 
been demonstrated on previous occasions (Muraskin, 1970; Muraskin, 1972a) 
using analytic rather than computer  considerations. 

3. Data 2 

We take for I-}k the following: 

P~3 = - B o  pl  = P~o = B1 20 = B3 P~o -B2  

P~l = Bo P°I = - B 3  r ° l  = B2 V ° = - . 1  
p3 _ -B1 P~3 = Bo P~o = - B 3  P~o = B2 20 - (3.1) 

r~2 = Bo r~o2 = - B 3  r13 = B~ r~3 = - B 1  

p2 - B o  P ~ I  = B3 r31 = -B2 P ~  = B1 

P~2 = - B o  Pl°2 = B3 ['03 = - B 2  po  :3 = B1 

We also take 

1 0 

gi/ = 0 1 

0 0 

(3.2) 

Thus, we have that  g imP~ is antisymmetric in all indices at the origin..This set 
of  Pik, we then find, is preserved at all points by the field equations ~jg;l = 0. 
Thus, ~ g  are constants and are exact solutions of  the field equations. The in- 
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tegrabil i ty equat ions  are satisfied bu t  with R~lkz ~ 0. Thus,  this set of  data is a 
generalisation of  the exact Dirac plane wave solut ion discussed previously 
(Muraskin, 197 la).  

4. D a t a 3  

The non-zero componen t s  for PYv are taken to be 

r l  0 p220 r30 0 _ _ 1 _ _  = = = Poo  - P o l  - P ~  = P~3 = A 

G -- G = = - r h  = = -r1  -- s 

p O = t o 2  = P~3 = - C  

(4.1) 

gag is taken to be (:00:) 
1 0 ( 4 . 2 )  

ga~= 0 1 

0 0 

This is the same data used in Muraskin (1973b) .  In Muraskin (1973b)  we took 
e~i such that  goo was a m a x i m u m  at the origin. In  this section we do no t  impose 
this requi rement  and  take eei to have, for example,  the values 

e l l =  • 88 e12 = - • 42 e13 = - " 32 elo = • 22 

e21 = • 5 e22 = • 9 e23 = - • 425 e2o = - 3 

e31 = • 2 e32 = -- • 55 e33 = • 89 e3o = • 6 

e°l  = " 44 e°2 = -- • 16 e°3 = • 39 e°o = 1' 01 

(4.3) 

We still found  that  all componen t s  of  P}k and gii had m ax im um  and m i n i m u m  
behavior in the vicini ty of  the origin and the values of  P}k and gi] approach 
zero after we have progressed a sufficient distance from the origin along the 
axes (as welt as on selected runs off  the axes). The e°~ i above were chosen in no  
special way. Thus, we get a b o u n d ed  particle irrespective of  the choice of  e°~i, 
at least for a wide class of  e~i/f  The choice of  P~v, ga~ are then the significant 
variables in obta in ing a b o u n d ed  particle here. 

5. D a t a 4  

In this section we take those ['~v that  describe Dirac plane waves (Muraskin, 
1971 a) in the x,  y ,  z directions s imul taneously ,  together  with those componen t s  

t We cannot choose eel all zero, for example, and still get a bounded particle. 
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instrumental  in giving a bounded particle. The following F~, r were non-zero 

rlo = r 220 -- P~o -- I"11 = P ~  = I'3oa = I ' °  = +1 

(5.1) 
r ~  = r~,~ = r ~  = - r h  = - r ~ ,  = - r~2  = +1 

r~o r ~ o = r ~ o  - r ~ o -  ~ -  ~ -  . . . .  P i o  - - P 2 o  - +1 

We also took 

and 

e l l  = • 7 

e21 = -  • 12 

e31 = - • 015 

(000:) 
1 0 (5.2) 

g ~ =  0 1 

0 0 

eI2 = • 62 el3 = • 46 elo = 2.4 

e22 = - • 08 e23 = - • 14 e2o = .  082 
(5.3) 

e32 = - • 097 e33 = - "O111 eao -- - 092 

e°o = 2"0 

e°b e°2, e°3 were calculated in the fashion of  Muraskin (1971 b) to  make goo a 
maximum at the origin. This set of  data obeys the R]kt = 0 integrabil i ty rela- 
tions. 

We have already argued in Muraskin (1973b) that  we can get the same 
answer at all points  for ~ k ,  gij if  we consider a theory based on e~i with 

aeai = p~,ye3ie3" k 
ax k 

~: k = e ai e~j e ~'k Pc~q, (5.4) 

gij = eaie~j ga.3 

with P ~ ,  g ~  constant .  If  we use data (5.1), (5.2) and (5.3), we find from the 
computer  that eC~ i --'; 0 if  we go far enough along the x-axis away from the 
origin. This is not  the boundary condi t ion e°~ i -+ ~a i which we would like in 
order to enable us to introduce contravafiant indices using the dual field e~/. 
I fR~kl  & 0 we may bring in .P~k, as in Muraskin (1973b), with the aim of  
satisfying eei --> 8~. In the R}lcl = 0 situation the introduct ion of  I ' ~ g  is not  a 
necessity. However, we never showed that  it  could not  be introduced.  We may  
recall that  in Muraskin (1970) we were able to bring in l ~ k  and P~&(x),  gc~(x)  
and still h a v e  R~k I = 0. We shall assume this to be the case here in order that  
the boundary condit ion e~i -+ fi~ be satisfied. 

We perform a three-dimensional rotat ion about  a coordinate axis using the 
formula 

r ' % ,  = a2~'&,a~,r'd~, (5.5) 
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and 

We take, for example, 

(5.6) gdt3' 

cOS sin 

i s i n ¢  cos~0 0 (5.7) acid' 0 1 

0 0 

This describes a rotation about the z-axis. We find that, unlike our findings in 
Muraskin (1973), the data is not  invariant, although it is nearly invariant. All 
components except P~o, P~o, F~o, P~o, 3 3 Plo, I'2o remain unchanged. No 1`~, 
that was zero became non-zero. Thus, we have a structure that is similar to the 
original structure even though there is no invariance. 

We have found, first of  all, that gi], at all points considered, came out the 
same as the gi] in the Muraskin (1973b) data. Thus, we get the same bounded 
particle for gi] as we obtained before. This also suggests that gi] -> 0 after we 
proceed sufficiently far from the origin. We have made tong runs down the 
-+x-axes and have also found that ~]k -> 0 if we go far enough down the axis. 
We note that even though gii is the same as in Muraskin (1973b) the 1'}e are 
different. 

In running down the -+x-axes, we found as many as four turnabout points 
for components of  1`~k. The largest number of  turnabout points seen in our 
work previously was three.t Thus we have slightly greater oscillatory behavior 
than we had found previously. Also, we found that at x = - 3 8 1  not  all the 
components were decreasing in magnitude (one was still increasing). This situa- 
tion was remedied by the time we got to x "~ - 7 0 0 .  Thus, the monotonic be- 
havior that we previously found down the axis far from the origin took much 
longer to achieve here. It is not  clear if any of  this is significant, but at any 
rate it would appear that we have some additional structure with the present 
data. 

Also, it is not  apparent whether this data is obtainable from a transformation 
on data that is invariant under three-dimensional rotations or not. 

6. Data5 

In Muraskin (1973b) we pointed out that the choice of  B (called C in 
Muraskin (1973b)) in equation (4.1) did not alter the values ofgi]. We could 
then, in fact, take B = 0 and we would still obtain a bounded particle in goo 
with the same shape as when B % 0. But ~ k  would be different for different B. 

t The parameters used in the two cases were comparable. Note, it is possible that too 
large a grid could obscure turnabout points. This would be the case for both sets of data. 
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The question, therefore is whether there is some important role played by the 
B terms in the theory. Perhaps they are responsible for the lack of  singularities 
in ~}k. Thus we have investigated the data of  Muraskin (1973b) but with 
B = 0. The qualitative picture that emerges, however, was similar to the case of  
B ~ 0. Hence the role of  B is not apparent. We still obtain ~ k  -> 0 far down 
the axes. The integrability equations satisfied here are of  the R~kt ~ 0 variety. 
The oscillatory behavior is similar to the data of  Muraskin (1973b). 

7. Data6 

In this case we considered A = C = 0, B ~ 0 in equation (4.1). This by itself 
would give an exact solution to the field equations and does not help us to 
understand any possible need for the completely antisymmetric components. 
What we shall do is to take, in addition to the B terms, F ° ~ 0. Such data is 
similar to the data in Muraskin (t971b).  In that paper all components having a 
zero index were zero except for F ° .  We find that the present data satisfies the 
R~xt ~ 0 integrability equations. We have taken g ~  to be given by equation 
(4.2). We found no maximum or minimum ingoo at the origin. We used 
the same e~  as in (4.3). The results show a tendency toward blow-up. All 
components of  the field increase or decrease with an ever-increasing rate as we 
move down the axis. Note, in Muraskin & Ring (1972) we obtained a similar 
kind of  result for the data proposed in Muraskin (1971b). 

8. Data 7 

In this section we ask whether it is possible to construct a theory based on 
gii, I~k such that P}g ~ 0, gij ~ 0 at infinity and for which g ~ 0 at the origin. 
Since gq -~ 0 at infinity we do not have a non-singular g# at all points. 

In g = 0 theory, f ig is not a physically meaningful field, thus we do not 
introduce such a quantity. Similarly, ifgi] -~ 0 at infinity the field ~J(x) will 
not be considered to be a physically meaningful variable, and will not  be intro- 
duced into any of  the basic field equations.t 

We consider the following data 

P ~  = 6 ~ .  t + g~7 ~ + 8~0~ + g~aBPepa~.r (8.1) 

with$ 

¢~ = 0~ = --~0~ = P°o 

Ba = const. Ca (8.2) 

"~ The fact is, using the ga[3, F~,), data (8.1)., (8.2) and (8.3), having g ~ 0, we can obtain a 
bounded particle solution of the equations Fljk;l = O, gij;R = 0 ,  for which the computer 
suggests gij ~ O, F}t c -~ 0 at infinity. 

:~ This data is consistent with an underlying structure that is invariant under three- 
dimensional rotations. This is because (8.1) and (8.2) can be obtained from a four- 
dimensional orthogonal transformation on a set of invariant data. 
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g ~ i s  defined at the origin and taken to be diag. (1, 1, 1, 1). Numerically, we 
chose ~1 =" 1, ~2 =" 2, q~a =" 3, ~o = "4 and Ba = 2q~a. go~ is taken to be (at the 
origin) (oo!) 

1 0 

go~ = 0 1 

0 0 

We take e~i to give a maximum in goo (at the origin) 

e~l = • 7 e12 = - 62 ela 

e21 = - • 12 e22 = - • 08 e23 

ea~ = - . 0 1 5  e32 = - ' 0 9 7  e3a 

= - 45 elo = 1 - 5  

= - • t4  e2o = • 082 

= -0 -111  e3o = "092 

e°o = 1.0 

(8.3) 

(8.4) 

e°l, e°2, e°3 are calculated as in Muraskdn (1971b). Now (8.1) and (8.2)lead to 
a set of  numbers for P~u. Together with the numbers (8.3) and (8.4) we find 
that the R~kl ~ 0 integrability equations are satisfied and F~'k -+ 0, gq -~ 0 is 
observed far from the origin in our computer studies. 

It is assumed that there exists a set ofgo~(x), lP~v(x), Pc~¢tc so that e~i satisfies 
eai ~ 8~ far from the origin in order to justify the contravariant index in ~k .  

The computer studies show that the goo particle is bounded. We have not 
obtained any additional oscillatory behavior than in Muraskin (1973b). 

The data above appears to lead to a bounded particle without requiring 
g = 0. The computer work serves to illustrate that ~]k -+ 0 at infinity can occur 
when gil -* 0 at infinity without requiring that the auxiliary conditions of  
Muraskin (1972c) be satisfied.t 

9. Data 8 

We have shown that we can obtain a bounded particle even when the com- 
pletely antisymmetric components were zero as in Data 5. Since these com- 
ponents are not essential for a bounded particle, this suggests that we may be 
able to get away with more simple kinds of  theories. The most simple theory 
would involve the case in which g~pP~v is completely symmetric in all indices 
as such a situation can be related to a single-field variable. To see this point, 
we write down the field equation for gi] 

3gq = P[kgt] + Pfxgit =- Piik + I'ilk Ox k (9. t)  

t The invafiants in Muraskin (1972c) would involve multiplication of infinity by zero at 
space-time infinity, thus the conclusions of that paper would not apply. 
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Since Pijk is to  be comple t e ly  symmetr ic ,  we have 

3gi! = ~gik 
3x tc 3x ] 

(9.2)  

This equa t ion  is ident ica l ly  satisfied i f  

gij = oxi~xl  (9.3)  

gq is symmet r i c  in i and ] as it  should  be. F r o m  ( 9 . 1 )  we then  ob ta in  

1 a3q~ 
I~ijk = 2 OxiOxJOx Ic 

(9.4)  

which is symmet r i c  in all indices as required.  Thus, gq and Pqk can be buil t  up 
f rom a single variable,  ~ . t  It is no t  clear tha t  ~ k ; t  = 0 then  leads to  solut ions 
tha t  are everywhere  finite.  This is something  tha t  we shall investigate.  

A set o fg~pI~7 ,  which is comple t e ly  symmet r i c  in all indices,  is given by  

P h  = a = - -  2 

P~2 = b =" 3 (9.5)  
lP~3 = c = -  6 

P ° o  = d = - " 7 

with g ~  given by  (8.3).  This data obeysR}kl  = 0 in tegrabi l i ty .  We obta in  a 
m in im um  in goo at  the origin using the same eai as in (8.4).  e°l ,  e°2, e°3 were 
ca lcula ted  in the  manner  o f  Muraskin (1971 b).  The results  f rom the compu te r  
show no b o u n d  in goo developing.  A no te  o f  cau t ion  should  be in te r jec ted  at  
this poin t .  When some c o m p o n e n t s  o f  the f ield con t inue  to  increase or decrease 
at  an ever-increasing ra te  af ter  a reasonably  long run, this  does no t  cons t i tu te  
p r o o f  of  a s ingulari ty developing since the  magni tudes  associa ted  wi th  the  
par t ic les  m a y  be ex t r eme ly  large. Below we give representat ive  data.  

go0 rlO0 P~I 

X = 0 8"02 1"78 -- " 069 
X = 1 8 '51 2"29 -- " 053 
x = 2  10"2 2"94 - . 0 4 1  
x = 3 14"0 3"85 - • 032 
x = 4 22"6 5"30 - • 025 
x = 5 46-7 8-07 - -017 
x = 6 164"5 15-7 - • 004 
x = 6"98 11,364"0 134-4 - 145 

"~ This scalar function is not constructed from products ofgi], l}'ic , m 
as is the scalar functions discussed in Muraskin (1972c). 
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A turnabout was seen in some components of  ~ k  during this run. However, 
the data appears to us to suggest that a singularity could be developing. 

10. Data 9 

In Muraskin (1970) and Muraskin & Clark (1970) we introduced a set of  
data called particle A and particle B. This sort of  data exhibited a reflection 
symmetry about the origin for many of  the components of  the f idd  to com- 
puter accuracy. Thus, this set of  data shows that the field is capable of  describ- 
ing symmetric configurations. We have found that after long runs down the 
axes, no bound showed up for goo. There was also a plane through the origin 
on which components such as P~3 did not change at all. We are, therefore, 
rather suspicious of  this data. 

11. Data 10 

In Muraskin ( t972b)  we introduced a set of  data that obeys R/lm ~ 0. We 
were unable to arrange the quantities appearing in equation (11) o f  Muraskin 
(197 lb) to be non-zero. Thus, no maximum or minimum in goo was found at 
the origin. Running down the x-axis we found all components of  the field 
growing larger and larger in magnitude, suggesting a blow-up. 

12. Conclusions 

We first of  all see that there are many solutions of  the integrability equa- 
tions, of  which we have discovered a small number. 

We have found a bounded particle solution that has only slightly more 
structure than we had obtained previously. We had hoped for a bounded par- 
ticle immersed in an 'agitated' vacuum. 

We must also keep in mind two natural limitations in our computer pro- 
gram. First, the distances between particle systems may be enormous. Thus, 
the data of  Muraskin (1973b) or data 4 or data 7 (as an example) cannot be 
ruled out  as a possibility, even though we have not found an agitated vacuum. 
It may be that one has to make exceedingly long runs before additional struc- 
ture shows up. The second limitation is that the value of  field components 
associated with a particle may be many orders of  magnitude larger than the 
environment. Thus, data 8 could conceivably still describe a bounded particle. 

We are not against making runs on the computer of  considerable longer 
duration than we have up to now. However, we would like to first justify to 
ourselves that there is a reasonable chance of  something worthwhile coming 
out before such an attempt is made. The criterion we are looking for (and we 
have to admit that we may be mistaken) is the presence of  an agitated vacuum, 
or at least a vacuum with considerably more structure than we have seen. 

We have noted from data 1 that sines and cosines are present in the theory; 
we have seen that a bounded particle is present; we have seen that the apparent 
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absence o f  singularities is present ;  we have seen that  the  t rends toward  natural  
boundary  condi t ions  are present ;  so perhaps a be t te r  set o f  data does exist. 
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